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Glassy behavior of the parking lot model

Amy J. Kolan,* Edmund R. Nowak,† and Alexei V. Tkachenko‡

The James Franck Institute, The University of Chicago, Chicago, Illinois 60637
~Received 8 June 1998!

We present a theoretical discussion of the reversible parking problem, which appears to be one of the
simplest systems exhibiting glassy behavior. The existence of slow relaxation, nontrivial fluctuations, and an
annealing effect can all be understood by recognizing that two different time scales are present in the problem.
One of these scales corresponds to the fast filling of existing voids, the other is associated with collective
processes that overcome partial ergodicity breaking. The results of the theory are in a good agreement with
simulation data; they provide a simple qualitative picture for understanding recent granular compaction ex-
periments and other glassy systems.@S1063-651X~99!14402-7#

PACS number~s!: 68.45.Da, 61.43.2j, 64.70.Pf
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I. INTRODUCTION

Constrained dynamics of complex systems has long b
a subject of extensive experimental and theoretical resea
Certain important features, such as slowing kinetics, non
ponential relaxations, and memory effects are believed to
generic for a wide class of systems ranging from structu
and spin glasses to granular materials and traffic flows@1–3#.
In spite of significant progress in this field there is still n
general framework for the description of jamming and gla
phenomena. The development of a clear qualitative pic
of them has been frustrated by the relatively high complex
of the considered systems. One could hope to boost the
ceptual progress in this field by analyzing simple mod
capable of capturing the important features of glasses.

In this paper we present a theoretical discussion of on
the simplest systems that exhibits glassylike relaxation
namics and a nontrivial fluctuation spectrum. This system
known as the parking lot model~PLM! @4–8#, or the con-
tinuous random adsorption problem, and it is defined as
lows. Identical, unit length particles~cars! can adsorb on a
line ~curb! at ratek1 per unit curb length. They can als
leave the line with ratek2 . The desorption process is unr
stricted while the adsorption is subject to free volume c
straints, i.e., two cars cannot overlap~see Fig. 1!. This model
can be applied in a straightforward way to random phys
adsorption of large molecules. In addition, the PLM appe
to be one of the most successful models for the descriptio
density relaxation and fluctuations in a vibrated granular m
terial. The possible reason for this is that the dynamics of
PLM drastically depends on the available free volume, j
as in the case of granular materials or structural glasses

The dynamics of the original version of the PLM,
which the particles adsorb irreversibly~i.e., k250), has
been well understood as long ago as 1958 by Renyi.@5# He
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found that the system jams at densityrc.0.75, and the way
it approaches this state is given by the following formula

r~ t !5E
0

k1t

dw expF22E
0

w

du~12e2u!/uG . ~1!

The late-stage asymptotics of this result is the power-
relaxation:r(t)2rc;1/t.

The desorption process introduced by Krapivsky and B
Naim @8# results in even richer physics. In a recent paper
granular compaction, Nowaket al. @9# presented the result
of simulations on the PLM. These simulations and the
perimental granular compaction data have many impor
features in common. In particular, the average coverage
the curb as a function of time, shown in Fig. 2, is ve
similar to the density relaxation curve for the vibrated sa
Once in the steady state, the finite size of the system res
in considerable density fluctuations. Insight into their d
namics is provided by the power spectrum as seen in Fig
This figure illuminates one of the most remarkable proper
of the parking lot model, i.e., that it exhibits two very diffe
ent time scales at highk[k1/k2 values ~high density!.
These time scales appear in the power spectrum as two
ner frequencies, one at high frequency and one at low.
low-frequency corner is Lorentzian, which indicates that
can be associated with exponential relaxation at a single t
scale. The high-frequency ‘‘corner,’’ however, shows an u
usual ‘‘hump’’ that indicates that the density relaxation ca

20

FIG. 1. Parking lot model.
3094 ©1999 The American Physical Society



r

nt
he
e
,
t
o
fo
e

ss
na
se

the
the

akes
vol-
tion.
s of

ui-
l

cal
is
the

to
a-

se
ve

ach
and
ho
the
car
ired
ity of
its
in-

ion

pa-
the
rly
-

is
gu-

ical
o a
om

ion

ve

m

-

-
a

th
t

PRE 59 3095GLASSY BEHAVIOR OF THE PARKING LOT MODEL
not be described with only one time scale. It is these featu
in the power spectrum that led Nowaket al. to present the
parking lot model in conjunction with the sand experime
which shows a similar nontrivial fluctuation spectrum. T
existence of several relaxation time scales is a signatur
the partial ergodicity breakingexhibited by the model, i.e.
its high-frequency evolution does not allow the system
explore all the configurational space. In this sense the
served behavior of the PLM may be relevant not only
understanding the particular granular compaction experim
but also for the whole class of systems exhibiting gla
relaxation dynamics. Below we focus on developing an a
lytical description of the PLM capable of capturing the
intriguing features and revealing the underlying physics.

FIG. 2. Simulation data~circles! and theoretical results for den
sity evolution in the cold (k5104) and hot (k510) regimes. Note
that the mean field~dashed line! is quite adequate for the descrip
tion of the hot system but it fails to describe the slow dynamics
the ‘‘supercooled’’ regime fork5104. The solid line is the combi-
nation of the irreversible parking curve, Eq.~1!, describing the fast
stage of the relaxation~for k5104), and our result, beginning att
5100, for the later slow dynamics.

FIG. 3. The power spectrum of density fluctuations near
equilibrium fork5103 andk5104. Circles and solid lines represen
the simulation data and our analytic results, respectively.
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II. LIMITATIONS OF THE MEAN-FIELD APPROACH

In their original work on the reversible PLM@8#, Krapiv-
sky and Ben-Naim proposed a mean-field description of
problem that can be essentially expressed in terms of
following master equation for the average densityr:

]r

]t
5k1~12r!expS 2

r

12r D2k2r. ~2!

Here the first term represents the adsorption rate and t
into account its strong dependence on the available free
ume; the second term corresponds to unrestricted desorp
The above equation indeed captures some of the feature
the PLM. In particular, it results in an equation for the eq
librium densityreq , which is consistent with the numerica
data:

S 12req

req
DexpS 2

req

12req
D5

k2

k1
. ~3!

Although this mean-field approach does result in typi
jamming dynamics, the predicted density relaxation rate
several orders of magnitude faster than that observed in
simulations@9#. Moreover, the mean-field description fails
capture the most interesting feature of the PLM, its fluctu
tion spectrum. Indeed, the very structure of Eq.~2! cannot
result in anything different from a regular linear respon
equation for the density near equilibrium, i.e., it should ha
a single relaxation time for small fluctuations.

An essential feature that the above mean-field appro
overlooks is the strong correlation between adsorption
desorption events. This correlation is familiar to anyone w
has ever attempted to park in a big city. Cars do not leave
curb very often but as soon as they do an incoming
rushes in to take the newly created space. This pa
adsorption-desorption process does not change the dens
the system; it is equivalent to merely sliding a car in
parking space. One can explicitly emphasize this by the
troduction of a slow~adiabatic! variableZ[N1N* , which
is the sum of the number of adsorbed cars,N, and the num-
ber of voids large enough to fit at least one particleN* . If
the system is sufficiently dense, most individual adsorpt
or desorption events do not change the parameterZ. The
existence of this slow variable results in the observed se
ration of the relaxation time scales. The fast modes of
density relaxation correspond to the evolution with nea
constantZ, while the slow dynamics is determined by low
probability events, which result in a drift ofZ. In other
words, on short time scales the ergodicity of the PLM
broken: the system can explore only the part of the confi
rational space corresponding to a constantZ.

The fast and slow modes are expressed as two typ
time scales in the density fluctuations and also lead t
two-stage relaxation process of the density evolution fr
r50 to req . In the case of a very small desorption ratek2

the system follows the universal irreversible-adsorpt
curve, Eq.~1!, until it jams atrc.0.75. Afterward, it slowly
evolves towards the equilibrium density. By using the abo
result forreq as a function ofk[k1 /k2 and knowingrc one
can construct the ‘‘kinetic phase diagram’’ of the system~see
Fig. 4!: if req(k),rc the system reaches the equilibriu
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3096 PRE 59KOLAN, NOWAK, AND TKACHENKO
density before it jams, otherwise it relaxes torc and then
slowly creeps toward equilibrium. It would be tempting
associate the critical pointkc.60, which separates the tw
regimes, with a glass transition. However, this term is tra
tionally reserved for the hypothetical point at which the
netic coefficients of a system would go to zero~in our simple
case this is the pointk5`). Thus, the zone of partial ergod
icity breaking appearing atk.kc is an analog of what is
conventionally called a supercooled liquid rather than
glass.

An important implication of the above picture of the PL
kinetics is the existence of an annealing effect, which is ty
cal for classical glassy systems and has also been observ
the granular compaction experiments@9#. The idea is that
one can overcome the slow kinetics of the supercooled
tem by ‘‘heating’’ it ~by decreasingk belowkc), then slowly
cooling it ~increasingk!, so that the system would follow th
reversible equilibrium curvereq(k).

III. FAST DYNAMICS OF THE SYSTEM

As we have pointed out above, the fast dynamics of
PLM is dominated by a two part process: a desorption t
takes place at ratek2 leaving a void and an adsorption th
occurs at ratek1z, where z is the void size minus a ca
length. This two-part process is equivalent to simple repla
ment of one adsorbed particle with another or a sliding o
single particle in its own space. As a result, the separat
between a given particle and its two nearest neighborsx1

and x2 , change randomly to the new valuesx18 and x28 in
such a way that their sum remains constant:x11x25x18
1x285z. This sliding process creates the necessary mixin
ensure that the steady-state distribution of the spaces
tween cars,p(x), corresponds to the maximal entropy for
fixed sum of all the separations. Thus, the distribution fu
tion can be obtained by maximizing the functional

FIG. 4. ‘‘Kinetic phase diagram’’ of the system. The solid lin
corresponds to the reversible equilibrium linereq(k); the dashed
line shows the jamming density above which the ergodicity is p
tially broken.
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F@p#52E
0

`

dxS p~x!ln p~x!1p~x!
x

d D ~4!

with respect top(x), where 1/d is the Lagrange multiplier
conjugate tox. Naturally, the resulting formula forp(x) is
similar to the Boltzmann distribution:

p~x!5
1

d
expS 2

x

d D . ~5!

The parameterd is equal to the average spacing betwe
cars, i.e.,

d5
12r

r
. ~6!

We now proceed with the calculation of the high-frequen
part of the fluctuation spectrum. The coupled adsorpti
desorption process can be viewed as a relaxation-excita
of the conventional two-state~telegraph! system, which can
switch from one state, 0, to another one, 1, with a charac
istic time t and then relax back to 0 with the characteris
time t. The power spectrum of telegraph noise has be
investigated by Machlup@10# and is given by

S~v!5
1

p~ t1t!

1

v21n2
, ~7!

wheren51/t11/t.
The fast dynamics of the density is the superposition

these nearly independent telegraph modes, whose numb
essentially the number of cars~or, more precisely,Z!. An
important feature of the adsorption-desorption modes is
while their ‘‘excitation rate,’’ 1/t5k2 , is uniform over the
system, the relaxation time is the property of an individu
excited state, i.e., the adsorption rate is proportional to
free volume available at a given void: 1/t5k1(x11x2). As
a result, the fluctuation spectrum deviates from the sim
Lorentzian form, Eq.~7!:

SH~v![^rvr2v&[
^NvN2v&

L2
5

rk2

pL E
0

` f ~n!dn

v21n2
. ~8!

HereL is the total length of the system. Note that here a
below we assume thatk[k1 /k2@1, so that the typical ad-
sorption process is much faster than the desorption. A
result, the desorption rate determines the amplitude in
above expression, while the~nonuniform! adsorption domi-
nates its frequency dependence@i.e., n.1/t5k1(x11x2)#.
Thus, the calculation of the power spectrum for the park
lot model reduces to finding the distribution of relaxatio
times for adsorption, and then weighting the spectrum
telegraph noise with this distribution. As shown above,
distribution function for the inter-car spaces is exponent
Assuming that the separations between a given car and
two neighbors,x1 and x2 , are uncorrelated, we obtain th
following distribution of relaxation rates,n5k1(x11x2):

f ~n!5
n

vH
2

expS 2
n

vH
D . ~9!

r-
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PRE 59 3097GLASSY BEHAVIOR OF THE PARKING LOT MODEL
Here

vH[k1d ~10!

is the characteristic frequency of the fast relaxation.
One can now substitute the distribution function forn into

the above expression for the high-frequency fluctuation sp
trum, Eq.~8!. The result of the numerical integration of th
formula overn is in excellent agreement with the simul
tions, see Fig. 3. We now have an explanation for the hu
in the spectrum at high frequency; it is caused by a relativ
broad distribution of relaxation times for the adsorption p
cess. Further examination of our result illuminates the c
nection between the PLM and other, more complicated s
tems exhibiting glassy dynamics. The above distribution
relaxation rates does not just distort the Lorentzian form n
the characteristic frequency,vH[k1d, but rather affects the
spectrum at all frequencies belowvH . The asymptotic be-
havior of the spectrum atv!vH is

S~v!; ln v. ~11!

Hence, the spectrum never recovers the Lorentzian-like
teau regime at low frequencies. The logarithmic behavio
reminiscent of the power-law spectrum typical for glasses
mesoscopic frequencies~it corresponds tob relaxation@1#!.
Because the logarithmic behavior is a result of the prob
being one dimensional, one could expect real power-law
havior in the spectrum in higher dimensions. A simple
sumption that the adsorption probability is proportional
the free volume associated with the newly created void, co
bined with the natural exponential distribution for the fr
volume, would result in the 1/v spectrum at mesoscopic fre
quencies:

SH~v!;E
0

` exp~2n/n0!dn

v21n2
;1/v, v!n0 . ~12!

Note that in the one-dimensional case discussed ab
the free volume is a sum of two presumably independ
variables,x1 andx2 , each of which has an exponential di
tribution. As a result, the distribution function for the fre
volume vanishes near zero, i.e., the probability of finding
long-living excited state is strongly suppressed in the o
dimensional case compared to the higher dimensions.

IV. SLOW DYNAMICS OF THE SYSTEM

In the previous section we have discussed the fluctuat
of the density on short time scales, over which ergodicity
effectively broken. Now we proceed to a discussion of
low-frequency part of the fluctuation spectrum associa
with the change of the slow parameterZ. This change is
caused by collective events; the rearrangement of a state
responding to a givenZ is dominated by a two-car proces
In one process, responsible for decreasing the ‘‘grou
state’’ Z by 1, two adjacent cars leave and a single one~a
‘‘bad’’ parker! comes in their stead, hogging the space;
opposite process results in adding an extra car to the lo
car exits and leaves a large space big enough for two c
provided that the new cars are ‘‘good’’ parkers. How
these collective modes affect the power spectrum? We
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calculate the rates of the above two-car processes. The
of the 21 process has three contributions. First, a car m
leave, and the corresponding ‘‘trial rate’’ is justk2 per par-
ticle. Then, an adjacent car must leave before the hole lef
the first car fills, which gives a ‘‘waiting’’ factor
2k2*0

`*0
`exp(2nt)dtf(n)dn. Finally, the big hole must be

blocked by a bad parker~up to a correction of order ofd, the
probability of this is unity!. Thus the overall rate is

n215
2k2

2

k1d
. ~13!

The opposite,11, process has the same trial frequen
k2 per car. The void left by the car~its length isx11x2
11) must be large enough for two cars, which gives t
factor

11D

d2
expF2

11D

d GdD. ~14!

Note that the first incoming car must park with precisionD
5x11x221 in order to leave enough space for the seco
car. The probability of this happening contributes a factor
2D/(11D) to the overall11 rate:

n115k2E
0

` 2D

d2
expF2

11D

d GdD52k2 exp~21/d!.

~15!

The density changes with time according to the followi
equation:

ṙ5~n112n21!r1h~ t !. ~16!

Hereh is the noise originating from the fact that the dens
changes by discrete one-particle steps.^h(t)&50, because
the average evolution is given by the interplay of the11 and
21 kinetic terms in the above equation. Since adding
extra car or removing one at the moment of timet0 corre-
sponds toṄ56d(t2t0), and since there is no obviou
mechanism for the correlations between such processes

^h~ t !h~ t8!&5
n211n11

L
rd~ t2t8!. ~17!

Using Eq. ~16!, we find that the equilibrium density is
determined by the condition

k2

k1
5deqexp~21/deq!, ~18!

where deq5req
2121. This result coincides with the mean

field one, Eq.~3!. We note that the mean-field approach i
nores the adsorption-desorption correlations; this would b
reasonable assumption for the model with strong diffusion
the adsorbed cars. Since the diffusion cannot shift the e
librium properties, it is not surprising that the mean-fie
approach gives the correct value ofreq . As to the descrip-
tion of the PLM kinetics, the ratesn21 andn11 in Eq. ~16!
differ by an exponentially small factor, 2 exp(21/deq) from
their mean-field analogs. The above equation describes
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3098 PRE 59KOLAN, NOWAK, AND TKACHENKO
the slow evolution of the jammed state toward equilibriu
Thus, the overall density relaxation curve of the ‘‘cold’’ sy
tem ~at k.kc) consists of the classical fast regime, Eq.~1!,
resulting in a jamming atr5rc.0.75, and the desorption
promoted final stage, discussed here. Such a combinatio
the two theoretical results is in agreement with the simu
tion data, as is shown in Fig. 2. The same figure shows
the mean-field curve does not capture the two-stage natu
the relaxation dynamics and is inadequate for the descrip
of the cold system (k5104). However, the mean field ma
be used for the description of the single-stage relaxation
the ‘‘hot’’ system.

By expanding Eq.~16! near the equilibrium density, on
can determine the relaxation frequency of the system,vL and
the spectrum of the low-frequency fluctuations:

vL5
2k1

deq
exp~22/deq!, ~19!

SL~v!5
2k2req

pL

exp~21/deq!

~v21vL
2!

. ~20!

By combining this expression with the earlier result f
the high-frequency fluctuations, one obtains the followi
analytic form for the entire power spectrum of the PLM:

S~v![SH~v!1SL~v!

5
k2req

pL S E
0

` exp~2n/vH!

v21n2

ndn

vH
2

1
2 exp~21/deq!

v21vL
2 D .

~21!

This result agrees amazingly well with the simulation d
as shown in Fig. 3. Figure 5 shows how the characteri
frequenciesvH and vL depend on the control parameterk

FIG. 5. Low and high characteristic frequencies,vL andvH , as
functions of the equilibrium density. The dashed and solid lin
represent the theoretical results; the squares and the circles a
simulation data forvL andvH , respectively.
.

of
-
at
of
n

of

a
ic

[k1 /k2 ~or, equivalently onreq); the theoretical calculation
is again in good agreement with simulation.

V. CONCLUSIONS

We have presented a theoretical discussion of the par
lot model, which appears to be a very simple glassy syst
perhaps the simplest. We have identified two time scale
the problem: one associated with a simple relaxation of vo
and the other corresponding to the collective~two-particle!
processes responsible for the rearrangement of the ‘‘gro
state’’ ~the state that the system can reach by an instant
ing of all currently available voids!. In the limit of weak
desorption, corresponding to a large difference between
two times, the relaxation of the system toward its equil
rium density is a two-stage process: first, it reaches the
versal jamming densityr5rc.0.75 as if there were no de
sorption at all, then it slowly relaxes toreq(k) via collective
rearrangements. This two-stage relaxation feature disapp
in the regime of strong desorption (k,kc), and we identify
the crossover pointkc with req(k)5rc .

At k.kc , on times shorter than the longest characteris
scale (vL

21) the evolution of the system is nonergodic; th
regime is analogous to a supercooled liquid. The sys
evolves by jumping between the metastable states co
sponding to different values of the parameterZ. Note that the
lifetime of these states does not grow with the system s
but rather decreases. Since the probability of the rearran
ment of the ground state isn111n21 per particle per unit
time, its lifetime is inversely proportional to the number
carsN.Z: tZ

215Z(n111n21). In this sense, the free en
ergy landscape of PLM is similar to that of structural glass
Another similarity between the PLM and glassy systems
the possibility of accelerating relaxation by means of anne
ing.

The existence of two characteristic time scales is resp
sible for the intriguing form of the fluctuation spectrum
the reversible parking problem. The slow fluctuations a
described by a single Lorentzian with the relaxation f
quencyvL associated with two-particle rearrangements. T
fast dynamics is a superposition of many single-parti
adsorption-desorption modes. In a sense, the non-Lorent
form of the high-frequency part of the power spectrum is
reflection of the deviations of the local density from its a
erage value, i.e., it is a signature of long-living disorder.
this form, our observation may be relevant for understand
the nontrivial behavior of the relaxation spectrum of oth
glassy systems on mesoscopic frequencies. The distribu
of the relaxation rates of the single-particle excitations
sults not only in the distortion of the Lorentzian in the vici
ity of the characteristic corner frequencyvH , but also in an
interesting logarithmic behavior of the power spectrum
lower frequencies (S; ln v). We have suggested that th
feature is reminiscent of the power-law spectrum cor
sponding tob relaxation in classical glasses and that suc
power-law behavior could be reproducible in PLM at high
dimensions.
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